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Abstract
We discuss the dynamics of recombination of an expanding ultracold plasma
into highly excited Rydberg states, with emphasis on the influence of possible
strong coupling between the charges and the nonequilibrium character of
the electronic component. While the former does not significantly affect
recombination in current experimental scenarios, the latter is shown to have a
considerable influence on the system dynamics. We derive correction factors
quantifying the deviation of collision rates from their respective equilibrium
values. The experimentally observed unexpectedly high recombination rate at
long evolution times can be reproduced by a proper inclusion of these effects
without the need to invoke alternative, previously suggested mechanisms, such
as an ‘adiabatic motional recombination’ or the development of very strong
electron correlations by collisional cooling.

PACS numbers: 52.20.−j, 52.25.Dg

1. Introduction

Since their first experimental realization in 1999, ultracold (T � 1 K) quasineutral plasmas
[1] have gained an increasing amount of attention both from experimentalists and theoreticians
[2–10]. The appeal of these systems is based on essentially two remarkable properties. First,
the ultralow temperatures of the plasma suggest that the system might be in a very strongly
coupled regime otherwise realized mostly in exotic astrophysical objects. While early hopes
of observing Coulomb crystallization in such a plasma have not materialized yet due to various
intrinsic heating mechanisms, moderately strong coupling is still observed and significantly
affects the system evolution. Moreover, from the way the plasma is created by photoionization
of a cloud of neutral atoms, the system is in a state far from thermodynamical equilibrium.
On the one hand, the spatial distribution of the ions is fully uncorrelated initially. On the

1 Present address: ITAMP, Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138,
USA.
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other hand, the velocity distribution of the electrons is given by a microcanonical rather than a
thermal distribution immediately after the photoionization. Furthermore, the finite depth of the
potential generated by the ionic space charge implies deviations from a Maxwell–Boltzmann
distribution even at later times. Experimentally, the huge amount of control possible with state-
of-the-art techniques makes a very precise preparation of initial states possible. Moreover,
convenient timescales allow for detailed measurements of the time evolution of the plasma,
making ultracold plasmas an almost ideal system for experimental studies of strongly coupled
nonequilibrium systems.

Meanwhile, theoretical approaches have been developed for the description of various
aspects of the dynamics of ultracold plasmas which are in very good agreement with
experimental observations [8, 11]. The time evolution of macroscopic properties, such
as temperatures, densities, expansion velocities, etc, can be described even with simple
hydrodynamical approaches [12, 13], while ionic correlation effects can accurately be treated
using a hybrid molecular dynamics method [13]. So far, the dynamics of bound-state formation
through electron–ion recombination has withstood a quantitative modelling (see [14]). Firstly,
the timescale of the initial population of bound states is not accurately reproduced by the
current numerical simulations. Moreover, the rate of recombination at long times observed
experimentally is larger than that predicted by existing theories. While there have been
attempts to explain the observed behaviour by proposing new recombination mechanisms such
as ‘adiabatic motional recombination’ caused by a time-dependent continuum shift [15] or
the development of strong electron correlations by collisional cooling [16], these explanations
remain controversial. Since the former approach neglects the initial correlation-induced
heating and electronic field effects on continuum lowering, the respective continuum shift is
overestimated by an order of magnitude resulting in an overestimate of the corresponding
‘motional recombination’ rate. On the other hand, the results of [16] are inconsistent with
recent temperature measurements [3, 4], proving the existence of well-separated temperatures
for the electronic and ionic subsystems. This discrepancy is mainly due to overestimated
electron–ion collision rates used in [16].

In the present paper, we analyse the role of strong coupling as well as nonequilibrium
effects on the recombination behaviour. As it turns out, properly accounting for these
effects within existing theoretical approaches leads to reasonable agreement with experimental
observations without the need of invoking new recombination mechanisms.

2. Basic model

Despite their very low temperatures, typical densities of ultracold plasmas are sufficiently low
that the corresponding Fermi temperature is well below the electron temperature and quantum
statistical effects can safely be neglected. Hence, classical molecular dynamics simulations
are expected to provide a very accurate description of these plasmas. Indeed, it has been
demonstrated that they permit an accurate study of recombination on a short timescale [7, 9].
On the other hand, the huge particle numbers required and the extreme separation of the
electronic and ionic timescales make them unsuitable for investigations of the long-time plasma
dynamics, rendering a direct comparison with present experiments practically impossible.

One approach to overcome this problem in the framework of a hydrodynamical model
has been described in detail in [13]. Briefly, we start from the classical kinetic equations
of the electronic and ionic subsystems, respectively, which together with the assumption of
quasineutrality and a local density approximation for the ionic correlation function allows us
to derive a closed set of ordinary differential equations for the width of the plasma cloud,
the expansion velocity, and electronic and ionic temperatures. In order to take into account
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inelastic processes, these equations are coupled to a set of rate equations describing the
population dynamics of formed atoms. We account for radiative processes such as spontaneous
decay to lower levels and radiative recombination [12, 17] as well as collision processes such
as electron-impact (de)excitation, electron-impact ionization and three-body recombination.
The latter are described by the classical collision rates given in [18].

3. Strong coupling effects

Since the bound electrons typically occupy very highly excited Rydberg states, the collision
rates obtained in [18] from classical trajectory Monte Carlo calculations are expected to yield
reliable results for collisions taking place in vacuum. However, for these highly excited states
level shifts caused by correlations between the charges may lead to a significant modification
of the collision rates even at the extremely low densities realized in ultracold plasmas. In the
simplest approximation, the level shift may be assumed to be independent of the respective
binding energy, leading to the well-known Stewart–Pyatt expression [19]

�E = e2

a
[2(�e + �i)]

−1[(1 + 33/2(�e + �i)
3/2)2/3 − 1], (1)

valid for two-temperature plasmas in individual equilibrium, where �e and �i are the Coulomb
coupling parameters of electronic and ionic subsystems, respectively2. Since the timescale of
the electronic dynamics, of the order of some ns, is the shortest timescale in the system, this is
certainly a good approximation for the electronic subsystem. On the other hand, the build-up
of ionic correlations proceeds on a much slower timescale of µs. However, the static level shift
is uniquely determined by the corresponding spatial correlation function of the ions, while
locally large fields due to the presence of nearby electrons or ions average out in a neutral
plasma. As we have shown previously [10], the spatial ion correlation function resembles the
equilibrium form but parametrized by an effective Coulomb coupling parameter, even at the
early stages of the plasma evolution. Hence, we use this effective ionic coupling parameter to
determine the time-dependent level shift from equation (1).

In the simplest approximation, the recombination rate is only weakly affected by the
nonideality of the plasma, while the ionization rate is enhanced by a factor of roughly
exp (�E/kBTe) at small electron coupling (see e.g. [20]). As discussed in [21], this static
screening correction yields a good description of ionization processes, in particular since the
smallest atomic binding energies, given by kBTe, are much larger than the energy of electronic
plasma oscillations which are of the order of 10 mK for the highest densities of 109 cm−3.
Although strong-coupling corrections to the individual recombination rates are weak and
hence not considered here, the level shift (1) may decrease the total rate of recombination
by setting an upper limit for bound levels nstat = √

R/�E in addition to the Thomson value
of ntherm = √

R/kBTe, where R = 13.6 eV denotes the Rydberg energy. This fact has also
been discussed in [15] as possibly important in ultracold plasmas. However, the influence of
electronic electrostatic fields as well as the initial correlation-induced heating of the ions has
been neglected there, resulting in an overestimate of the level shift by an order of magnitude
and therefore in a much too low recombination rate. For the plasma parameters realized in
the experiment [2], the strong-coupling corrections discussed above do not lead to qualitative
changes of the recombination dynamics, but are expected to be important for the short-time

2 In the present situation of an inhomogeneous plasma with a Gaussian density profile, we define the respective
Coulomb coupling parameter as �e/i = e2/(kBTe/ia), where a = (4πρ̄/3)−1/3, ρ̄ = Ni/(4πσ 2)3/2 is the average
ion density and σ is the width of the plasma cloud.



4574 T Pohl and T Pattard

0 30 60 90 120
r/a

0

50

100

150
r2 ρ/

a

(a)

0 200 400 600 800
r/a

-15

-10

-5

0

ϕ /
k B

T
e

(b)

Figure 1. (a) Comparison of the electron density obtained from a full MD simulation (circles) of
50 000 ions and electrons with �e (t = 0) = 0.5 with the corresponding Michie–King distribution
(solid line). The shaded area shows the ion density profile. (b) Numerically calculated electrostatic
potential for Ni = 300 000, �e = 0.2 (circles) and Ni = 300 000, �e = 0.05 (squares), compared
to the fit formula equation (4).

dynamics at still lower electron temperatures and for alternative scenarios as considered, e.g.,
in [22].

4. Nonequilibrium effects

Another modification of the collision rates results from deviations from the commonly
assumed Maxwellian distribution of electron velocities, which does not hold for finite-size
plasmas. Since there is no external trapping potential, electrons evaporate from the plasma
until the resulting charge imbalance becomes large enough to trap the remaining electrons,
which quickly reach a quasi-steady state forming a temporarily quasineutral plasma in the
central region of the cloud. As first discussed in connection with studies of globular star
clusters, the resulting steady state is well represented by a truncated Maxwell–Boltzmann
distribution [13, 24]

fe(r, v) ∝ exp

(
−ϕ(r)

kBTe

) 


exp

(
− mev

2

2kBTe

)
− exp

(
− mev

2
c

2kBTe

)
, v � vc,

0, v > vc,

(2)

where the space charge potential ϕ has to be determined from �ϕ = 4πe2 (ρe − ρi) and
vc = √

2ϕ/me denotes the escape velocity3. In order to demonstrate the quality of this
expression, we compare in figure 1(a) the resulting density profile, the so-called Michie–King
distribution, with the electron density obtained from a full molecular dynamics simulation for
a relatively large particle number of 105.

Consequently, the correct collision rates have to be obtained by using the steady-state
distribution equation (2) instead of a Maxwellian, leading to a correction factor

κ(r) =
∫ ϕ

0

√
Eσ(E)fMK(E) dE∫ ϕ

0 fMK(E) dE

∫ ∞
0 fMB(E) dE∫ ∞

0

√
Eσ(E)fMB(E) dE

, (3)

where fMB ∝ √
E exp(−E/kBTe) denotes the Maxwell–Boltzmann distribution and fMK ∝√

E(exp(−E/kBTe) − exp(−ϕ/kBTe)). The required collision cross sections σ(E) are
obtained from an inverse Laplace transform of the original rates. This procedure leads to

3 Note that this relation implies a monotonic space dependence of ϕ. The general case has been discussed in [13].
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Figure 2. (a) Average correction factor κ̄ for ionization rates (solid line) and n → n + 1 excitation
rates (dashed line) for Ni = 500 000 and �e = 0.2 at two different densities, as indicated by the
arrows. (b) Average correction factor for recombination rates (solid line) and total deexcitation
rates (dashed line) for Ni = 500 000.

an additional space dependence of the collision rates via the potential ϕ(r). Finally, an
average correction coefficient κ̄ may be calculated by integrating over the Gaussian density
profile. The resulting correction factor only depends on the ion number Ni, the electronic
Coulomb coupling parameter �e and the transition energy in units of e2/a, ε = E

/
(e2/a).

In order to simulate the plasma evolution including these corrections, we have numerically
calculated the required space charge potential for a broad range of parameters, two examples
of which are shown in figure 1(b). Note that ϕ can be well fitted by the potential of a
homogeneously charged sphere

ϕ ≈ F0R
3

{
r2/(2R3) − 3/(2R), r � R,

−1/r, r > R,
(4)

with R = 0.73N0.404
i �0.105

e and F0 = kBTe a2/σ 2 = (e2/a)(6
√

π/Ni)
2/3�−1

e , an observation
which might prove to be very useful for future temperature measurements as described
in [4, 22].

In figure 2, we show the parameter dependence of the rate corrections κ̄ for (de)excitation,
ionization as well as recombination. While the corrections for the recombination and
deexcitation rates do not depend on the associated transition energy and these rates are only
slightly enhanced, the ionization and excitation rates quickly drop to zero below a critical
quantum number nc. This sudden decrease takes place when the potential depth −ϕ(0)

becomes smaller than the corresponding transition energy, since there is no electron left
in the plasma which could drive this transition. As we show below, this effect may lead
to considerable changes of the recombination dynamics due to the drastic decrease of the
potential depth during the plasma expansion.

5. Results and discussion

Before comparing our results with the measurements [2], some details of this experiment
need to be discussed. Experimentally, the number of Rydberg atoms has been determined by
analysing the signal obtained by applying an electrical field ramp to the plasma. In order to
avoid any further electron–atom collisions during this field ramp, an additional 10 µs field
pulse was used prior to the Rydberg atom detection to strip away free plasma electrons. We
have therefore shifted the experimental curve by −10 µs. Furthermore, only a finite window
nl < n < nu of Rydberg levels could be detected in the experiment since more deeply bound
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Figure 3. Comparison of the calculated (solid line) time dependence of the number of Rydberg
atoms with the experiment [2] (circles) for Ni (t = 0) = 700 000, ρ (t = 0) = 2.7×109 cm−3 and
Te (t = 0) = 6 K. The dashed line in (b) shows the result without the effect of ionic microfields
(see the text). Since there is an experimental uncertainty of a factor of 2 in the number of Rydberg
atoms due to detector calibration [2], we have scaled down the experimental curve by a factor
of 1.6.

states n < nl were not ionized by the field ramp while more weakly bound states n > nu were
already destroyed by the stripping field. From the respective maximum field strengths F of
the pre-ionization pulse and the detection ramp, and by using the relation [2]

Fn = F̃

6n4
, F̃ = 5.14 × 109 V cm−1, (5)

this window has been determined to be 40 � n � 100. However, after removing the
free electrons, the plasma becomes strongly charged, resulting in strong electric microfields
which may change the above window of detectable Rydberg levels. Measurements of such
microfields [23] reveal that they are indeed strong enough to significantly disturb the observed
field-ionization spectrum. As a simple estimate of this effect, we add the average electric field,
as calculated in [23], to the field-ionization ramp, from which we obtain a time-dependent
window of detectable Rydberg atoms by using equation (5).

A comparison between the experimental atom number dynamics4 and the present
calculation including strong-coupling effects, nonequilibrium effects and the influence of
ionic microfields is shown in figure 3. As can be seen, there is reasonable agreement for
the long-time evolution of the Rydberg atom number as well as for the short-time behaviour.
As discussed in [12], the nonmonotonic atom number evolution is entirely due to the finite
window of detectable Rydberg states. In fact, the total number of atoms is found to increase
monotonically, in contrast to the conclusions reached in [16]. On the other hand, the result
without taking into account the level shift by ionic microfields yields a far too large initial atom
number and a too short timescale for the initial rise. The improved agreement, even with our
simple estimate of the resulting level shifts, reveals the importance of electrical microfields in
interpreting field-ionization spectra.

At long times, the number of Rydberg atoms grows stronger than what has been predicted
using the rates from [18]. This can be attributed to the fact that the density, and hence
the depth of the ionic potential well ϕ, significantly decreases during the plasma expansion.
As a consequence, the critical quantum number nc below which the ionization rate drops
to zero (figure 2(a)) increases continuously, shifting the balance between recombination of

4 Since there is an experimental uncertainty of a factor of 2 in the number of Rydberg atoms due to detector calibration
[2], we have scaled down the experimental curve by a factor of 1.6.
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free electrons and re-ionization of bound states. Taking this effect into account leads to a
reasonable agreement with the experimental results even for the later stages of the plasma
evolution.

In conclusion, incorporating strong-coupling effects as well as the influence of
the nonequilibrium electronic velocity distribution on the recombination behaviour of
ultracold quasineutral plasmas leads to results in reasonable agreement with experimental
measurements. This seems to obliviate the need for invoking alternative, more exotic
recombination mechanisms.
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